Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Pharmacol Ther ; 247: 108445, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-20240821

ABSTRACT

Allergic diseases arise from a complex interplay between immune system and environmental factors. A link between the pathogenesis of allergic diseases and type 2 immune responses has become evident, with conventional and pathogenic type 2 helper T (Th2) cells involved in both. Recently, there has been a significant development in therapeutic agents for allergic diseases: IL-5 and IL-5 receptor antagonists, Janus kinase (JAK) inhibitors, and sublingual immunotherapy (SLIT). Mepolizumab, an IL-5, and Benralizumab, an IL-5 receptor antagonist, modulate eosinophilic inflammation mediated by IL-5-producing Th2 cells. Delgocitinib shows that JAK-associated signaling is essential for the inflammatory reaction in atopic dermatitis, one of the common allergic diseases. SLIT has a significant effect on allergic rhinitis by reducing pathogenic Th2 cell numbers. More recently, novel molecules that are involved in pathogenic Th2 cell-mediated allergic diseases have been identified. These include calcitonin gene-related peptide (CGRP), reactive oxygen species (ROS) scavenging machinery regulated by the Txnip-Nrf2-Blvrb axis, and myosin light chain 9 (Myl9), which interacts with CD69. This review provides an updated view of the recent research on treatment of allergic diseases and their cause: conventional and pathogenic Th2 cells.


Subject(s)
Dermatitis, Atopic , Hypersensitivity , Humans , Cytokines , Interleukin-5/therapeutic use , Hypersensitivity/drug therapy , Th2 Cells
2.
Front Immunol ; 13: 945063, 2022.
Article in English | MEDLINE | ID: covidwho-2032774

ABSTRACT

Type 2 helper T (Th2) cells, a subset of CD4+ T cells, play an important role in the host defense against pathogens and allergens by producing Th2 cytokines, such as interleukin-4 (IL-4), IL-5, and IL-13, to trigger inflammatory responses. Emerging evidence reveals that Th2 cells also contribute to the repair of injured tissues after inflammatory reactions. However, when the tissue repair process becomes chronic, excessive, or uncontrolled, pathological fibrosis is induced, leading to organ failure and death. Thus, proper control of Th2 cells is needed for complete tissue repair without the induction of fibrosis. Recently, the existence of pathogenic Th2 (Tpath2) cells has been revealed. Tpath2 cells produce large amounts of Th2 cytokines and induce type 2 inflammation when activated by antigen exposure or tissue injury. In recent studies, Tpath2 cells are suggested to play a central role in the induction of type 2 inflammation whereas the role of Tpath2 cells in tissue repair and fibrosis has been less reported in comparison to conventional Th2 cells. In this review, we discuss the roles of conventional Th2 cells and pathogenic Th2 cells in the sequence of tissue inflammation, repair, and fibrosis.


Subject(s)
Cytokines , Th2 Cells , Allergens , Fibrosis , Humans , Inflammation
3.
Proc Natl Acad Sci U S A ; 119(33): e2203437119, 2022 08 16.
Article in English | MEDLINE | ID: covidwho-1960624

ABSTRACT

The mortality of coronavirus disease 2019 (COVID-19) is strongly correlated with pulmonary vascular pathology accompanied by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection-triggered immune dysregulation and aberrant activation of platelets. We combined histological analyses using field emission scanning electron microscopy with energy-dispersive X-ray spectroscopy analyses of the lungs from autopsy samples and single-cell RNA sequencing of peripheral blood mononuclear cells to investigate the pathogenesis of vasculitis and immunothrombosis in COVID-19. We found that SARS-CoV-2 accumulated in the pulmonary vessels, causing exudative vasculitis accompanied by the emergence of thrombospondin-1-expressing noncanonical monocytes and the formation of myosin light chain 9 (Myl9)-containing microthrombi in the lung of COVID-19 patients with fatal disease. The amount of plasma Myl9 in COVID-19 was correlated with the clinical severity, and measuring plasma Myl9 together with other markers allowed us to predict the severity of the disease more accurately. This study provides detailed insight into the pathogenesis of vasculitis and immunothrombosis, which may lead to optimal medical treatment for COVID-19.


Subject(s)
COVID-19 , Lung , Myosin Light Chains , SARS-CoV-2 , Severity of Illness Index , Thromboinflammation , Vasculitis , COVID-19/blood , COVID-19/complications , COVID-19/pathology , Humans , Leukocytes, Mononuclear , Lung/blood supply , Lung/metabolism , Lung/pathology , Lung/virology , Myosin Light Chains/blood , RNA-Seq , SARS-CoV-2/isolation & purification , Single-Cell Analysis , Spectrometry, X-Ray Emission , Thromboinflammation/pathology , Thromboinflammation/virology , Vasculitis/pathology , Vasculitis/virology
SELECTION OF CITATIONS
SEARCH DETAIL